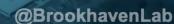


DAODs on Tape:


Saving DAODs in the Lifetime Model exception list to tape

Shigeki Misawa for SDCC

September 23, 2022

Proposed New Uses of Tape

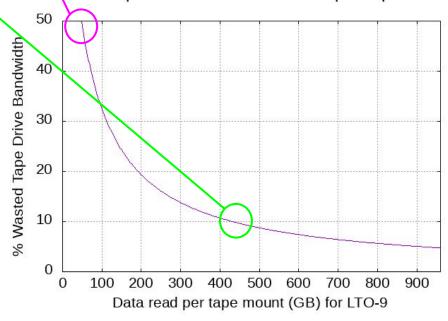
- Proposal to move DAOD datasets in Lifetime Model exception list to tape [1,2]
- Two new workflows have been proposed to handle requests for these DAODs on tape [2,3]
 - DAODs on Demand Allow users to access DAOD directly from tape
 - DOADs from AOD on Demand Satisfy requests for DAOD on demand by recreating them from their parent AODs on tape

^[2] Data Carousel R&D ideas (cern.ch)

^[3] https://indico.cern.ch/event/1189287/contributions/4998966/attachments/2491909/4279511/DAOD_nAOD_popularity_Aug2022.pdf

Tape System Limitations

- By default there is one QoS (Quality of Service) level
 - You get it when you get it
 - DAOD read requests are competing with other ATLAS read requests
 - LTO-9 end to end tape read takes 13.1 hours
 - Read optimizations favor maximizing data throughput over reducing time to first/last byte in a dataset
 - But some fair share mechanisms are in place to prevent complete starvation
 - Additional QoS levels requires development effort
- "Smart Writing" (Tailoring dataset layout on tape to optimize reading)
 - o Items brought up in meetings are only enablers of smart writing
 - e.g., Minimizing dataset transfer windows, dataset manifests, using file families
 - Achieving smart writing in reality requires additional work "under the covers".
 - All enablers may not be usable by all sites
 - Uncontrollable factors may make it impractical or impossible to achieve complete smart writing
 - e.g., Striping over tapes to achieve bandwidth requirements may conflict with dataset colocation goals to reduce the cost of tape mounts
 - Pareto principle (80/20 rule) applies when trying to achieve complete smart writing


Resource Limitations

- @ < 50GB read per tape, mount costs start to dominate
 - For data blobs < 50 GB, metric is # data blobs retrieved per minute (not MB/sec)
 - Effective use of tape drives requires reading at least 480GB of data from a tape
- There are limits to increasing # tape drives
 - \$\$ (cost)
 - ~128 tape drives max per tape library
 - Also all drives may not be usable as the library must accommodate multiple generations of tape drives
- Tape Mounts are also limited
 - 700 tape mounts per hour per tape library

$$F_{Waste} = \frac{1}{1 + T_{Read} / T_{Move}}$$

 $F_{\textit{Waste}} = \text{Fraction of wasted BW} \\ T_{\textit{Move}} = \text{Mount/Seek time} \\ T_{\textit{Read}} = \text{Time Reading}$

Wasted Tape Drive BW vs Data Read per Tape Mount

Dataset Ingest - Unanswered Questions

- What ingest bandwidth needs to be supported (burst and average)?

 Need 28 tape drive-days per petabyte @400MB/sec per tape drive running 24x7

 Alternatively, how quickly do DAODs need to be removed from disk?

 This impacts network bandwidth, disk cache configuration and required # of tape drives
- Dataset transfer window size distributions requires enumeration to determine impact on disk capacity and ability to colocate datasets
- Number of dataset being transferred concurrently of interest for the same reasons
- Ability to tune dataset transfers to an advantageous configuration
- Are there correlated datasets
 - Datasets that will be read back together
- DAOD dataset size distribution
 - Verify that average DAOD dataset size is representative of most datasets

DAOD Access (DAOD on Demand)

- Read access requirements needed
 - What staging bandwidth (BW off tape) is require for a dataset AND what export bandwidth (BW from disk to client) is required?
 - Latter will be higher if multiple clients read the same dataset
 - Are there upper bounds on access latency that cannot be exceeded?
 - Time to the first and last byte in the dataset, from the time that the initial request was issued
 - How long does the dataset need to be available?
 - This affects the size of the disk cache
 - How large is the request time window for a dataset
 - i.e., time between receiving first stage request for a dataset file to the last stage request for dataset file.
 - Aggregate DAOD/AOD access requirements
 - What number (peak and average) of jobs generating tape request are expected at any given time
 - i.e., what aggregate capability needs to be deployed

Backup Slides

Candidate DAOD dataset information

- "Short lived data to tape" slide [1] states the datasets of interest satisfy the following conditions
 - a. Flagged by DDM Operations for deletion in quarterly run of the Lifetime Model Campaign, <u>AND</u>
 - b. Flagged by users for a "lifetime extension"
 - c. Total volume of datasets moved to tape is ~4PB per campaign
 - (55 to 85 LTO cartridges, depending on generation)
 - d. Less than 5% of datasets moved to tape will be accessed in the 12 months after storage. Slide #5 in [2] seems to suggest that higher percentage will be accessed with 12 months

^[2] https://indico.cern.ch/event/1189287/contributions/4998966/attachments/2491909/4279511/DAOD_nAOD_popularity_Aug2022.pdf

Dataset Lifecycle[1]

- All datasets from a given campaign will be stored at one Tier 1
- Tier 1 will host datasets from at most one campaign on tape
 - Destination of campaign data will rotate among the Tier 1s
 - Campaign data will be deleted after one year
 - For any given Tier 1, all previous campaign data will be complete deleted, before receiving the next round of campaign data.
- Dedicated spacetoken will created for the datasets

^[2] https://indico.cern.ch/event/1189287/contributions/4998966/attachments/2491909/4279511/DAOD_nAOD_popularity_Aug2022.pdf